Роль магния и калия в комплексной терапии коморбидного больного

Рассмотрено значение магния и калия в нормальной жизнедеятельности организма. Отдельное внимание в статье авторы отвели препарату, содержащему калий и магний в виде соли аспарагиновой кислоты, обладающей особыми свойствами в отношении эффективности и высо




The role of magnesium and potassium in the complex treatment of comorbid patient

The importance of magnesium and potassium in the normal functioning of human organism is rewiewed. Special attention is payed to preparations containing potassium and magnesium in the form of salts with aspartic acid having special properties with regard to efficacy and safety of metabolic therapy.

Магниевая терапия в кардиологии сегодня имеет надежную теоретическую основу и убедительное практическое подтверждение. Магний, впервые выделенный английским химиком Гемфри Дэви в 1808 г., — двухвалентный металл с массой 24,301, в ионизированной форме он представляет собой положительный ион — катион — с зарядом 2+ (Mg++) [1].

Вместе с еще 11 основными структурными химическими элементами человеческого организма (углерод, водород, кислород, азот, натрий, калий, кальций, хлор, фосфор, сера и фтор) магний определяет 99% элементарного состава тела. По содержанию в организме он занимает четвертое место среди других катионов (после натрия, калия и кальция), а по содержанию в клетке — второе (после калия). Mg++ необходим для нормального протекания множества биохимических реакций и физиологических процессов. Ионы Mg++ способны образовывать обратимые соединения с органическими веществами, обеспечивая возможность их участия в разнообразных биохимических реакциях и активируя более чем 300 ферментов. В роли кофактора он принимает участие во многих ферментативных процессах, в частности в гликолизе, и гидролитическом расщеплении АТФ.

Находясь в комплексах с АТФ, Mg++ обеспечивает высвобождение энергии через активность Mg++-зависимых АТФаз. В качестве кофактора пируватдегидрогеназного комплекса Mg++ регулирует поступление продуктов гликолиза в цикл Кребса и этим препятствует накоплению лактата. Он участвует в синтезе и распаде нуклеиновых кислот, синтезе белков, жирных кислот и липидов, в частности, фосфолипидов, а также контролирует синтез ц-АМФ — универсального регулятора клеточного метаболизма и множества физиологических функций. Mg++ является естественным физиологическим антагонистом ионов кальция (Ca++).

В отличие от блокаторов медленных кальциевых каналов, Mg++ конкурирует с Ca++ не только в структуре мембранных каналов, но и на всех уровнях клеточной системы. На этой конкуренции основано подавление инициированных Ca++ реакций. При изменении внутриклеточного соотношения основных катионов и преобладании Ca++ происходит активация Ca++-чувствительных протеаз и липаз, приводящая к повреждению мембран. Благодаря антагонизму с Ca++, Mg++ выступает как мембрано- и цитопротектор. Аналогичным механизмом обусловлена и способность Mg++ уменьшать разобщение дыхания и окислительного фосфорилирования в митохондриях, вследствие чего уменьшаются непроизводительные потери энергии в виде тепла, увеличивается КПД синтеза АТФ и уменьшается потребность клетки в кислороде. Антагонизмом с Ca++ объясняют также снижение под действием ионов Mg++ АДФ-индуцированной агрегации тромбоцитов и подавление других кальцийзависимых реакций в каскадах коагуляции крови.

Ионы Mg++ играют важнейшую роль в электролитном балансе и процессах мембранного транспорта, требующего больших энергозатрат. Связываясь с клеточными, митохондриальными и другими мембранами, они регулируют их проницаемость для прочих ионов. Особое значение ионы Mg++ имеют в поддержании трансмембранного потенциала. Активируя Mg++-зависимую Na+-K+-АТФазу, они определяют работу K+/Na+-насоса, осуществляющего накопление калия внутри клетки и выведение натрия в межклеточное пространство, обеспечивая таким образом поляризацию мембраны и способствуя ее стабильности. Регуляцией электролитного баланса в клетке объясняется способность Mg++ подавлять автоматизм, проводимость и возбудимость, увеличивать абсолютную и укорачивать относительную рефрактерность миокарда. Принимая участие в высвобождении требующейся для функционирования мышечной клетки энергии и играя одну из главных ролей в расслаблении миоцита, Mg++ контролирует цикл «систола/диастола». Взаимодействие между четырьмя белками сократительного аппарата кардиомиоцита начинается после поступления в клетку кальция, играющего роль инициатора в образовании из актина и миозина актомиозина. Последний, обладая АТФазной активностью, в присутствии Ca++ и Mg++ гидролизует АТФ и обеспечивает энергией сокращение мышцы, то есть систолу сердца. Высвобождаясь из комплекса с АТФ по мере потребления последней, Mg++ вытесняет Ca++ из связи с тропонином С, в результате чего прекращается взаимодействие актина и миозина и наступает диастола. АТФазная активность актомиозина исчезает, а Ca++ с использованием энергии, высвобождающейся под влиянием Ca++-Mg++-зависимой АТФазы саркоплазматического ретикулума, реабсорбируется против градиента концентрации в полость его продольных канальцев, а оттуда по градиенту концентрации — в цистерны.

Таким образом, регуляция цикла «систола/диастола» осуществляется Mg++ как за счет его участия в энергетическом обмене, так и вследствие прямого антагонизма с Са++.

Описанные механизмы играют важную роль в вазодилатирующей активности Mg++, которая, возможно, опосредуется также через синтез ц-АМФ — мощного вазодилатирующего фактора, через подавляющее влияние на ренин-ангиотензин-альдостероновую систему и симпатическую иннервацию, а также через усиление натрийуреза вследствие повышения почечного кровотока посредством активации простациклина. В эксперименте было показано ингибирующее влияние Mg++ на выброс эндотелина, повышение которого, сопровождающее тромбоз коронарной артерии при инфаркте миокарда, приводит к выраженной локальной вазоконстрикции в зоне ишемического риска.

Кроме того, в эксперименте продемонстрировано, что Mg++ ингибирует протромбин, тромбин, фактор Кристмаса, проконвертин и плазменный компонент тромбопластина, а также его антиагрегантное действие. Среди метаболических функций, проявляющихся на уровне целого организма, необходимо подчеркнуть роль Mg++ в поддержании нормального липидного спектра, его участие в обеспечении тканевого ответа на инсулин в ингибировании гормона паращитовидной железы. Несмотря на то, что магний широко распространен в природе, его дефицит в человеческой популяции встречается чрезвычайно часто. Так, гипомагнезиемия определяется у 7–11% госпитализированных кардиологических больных, причем в 2 раза чаще у пациентов отделений интенсивной терапии [2]. Тому имеется множество причин. Однако достоверное выявление недостатка магния представляет определенные технические трудности, в связи с чем его диагностика на практике обычно проводится на основании клинических признаков. Так, если в одном из скрининговых исследований, проведенных в США, было показано, что гипомагнезиемия (уровень сывороточного Mg++ ниже 0,74 ммоль/л) встречалась в 47,1% случаев [3], то клинические признаки магниевого дефицита выявляются более чем у 72% взрослых американцев. По этиологии магниевый дефицит можно подразделить на первичный и вторичный.

Первичный (конституциональный, латентный) дефицит магния — в типичной, «эссенциальной», форме проявляется судорожным синдромом, называемым «спазмофилией», «конституциональной тетанией» или «нормокальциевой тетанией». У большей части больных явные клинические симптомы наблюдаются при нормальном содержании Mg++ в крови и связаны с нарушениями трансмембранного обмена Mg++, обусловленными, по-видимому, генетически. Вторичный дефицит магния — явление, присущее практически всем обществам современного мира. Причин тому множество, и они с известным допущением могут быть разделены на две большие группы: факторы, зависящие от условий жизни и связанные с различными заболеваниями.

Пищевой стандарт, принятый в России, странах Европы и Америки, не обеспечивает достаточного поступления Mg++ в организм человека. Это не связано с недоеданием, как в слаборазвитых странах, а обусловлено качественным составом пищи. Как уже указывалось, многие основные пищевые продукты (различные виды мяса и птицы, картофель и другие овощи, молоко и молочные продукты) содержат ограниченные количества Mg++. В большинстве продуктов с высоким содержанием Mg++ имеется либо много кальция или фосфора, либо белков или жиров, либо всех этих ингредиентов, что препятствует абсорбции Mg++. Многие богатые Mg++ продукты высококалорийны, поэтому могут употребляться в пищу лишь в ограниченном количестве, не покрывая потребность в Mg++. Всеми этими отрицательными свойствами не обладают шпинат и морская капуста, однако для обеспечения физиологической суточной потребности в Mg++ ежедневно нужно съедать 400–450 г первого или 200 г второй. Казалось бы, как источник Mg++ идеальным продуктом оказывается арбуз, но и здесь можно возразить, что диуретическое свойство арбуза приведет к повышенным потерям электролитов и возрастанию суточной потребности Mg++.

В связи с вышесказанным, современная популяция характеризуется пограничным количеством Mg++ в организме, поэтому, кроме непосредственно алиментарного дефицита, любая дополнительная нагрузка, способствующая затруднению всасывания Mg++, возрастанию его потерь или увеличению суточной потребности в нем, может спровоцировать развитие магниевого дефицита. Среди таких факторов можно назвать гипокалорийные диеты при борьбе с лишним весом; стресс (как острый, так и, особенно, хронический); напряженную физическую работу и физическое перенапряжение; гиподинамию; воздействие высоких температур (жаркий климат, горячие цеха, регулярное посещение парной бани); злоупотребление алкоголем (злоупотребление алкоголем столь широко распространено в современном мире, что, являясь по сути болезнью, в данном контексте должно рассматриваться вместе с другими условиями жизни, а не с патологическими процессами); беременность и лактацию; гормональную контрацепцию.

Причины магниевого дефицита, связанные с патологическими процессами, — это нарушение абсорбции Mg++ в связи с возрастными изменениями или заболеваниями ЖКТ (от синдрома малой абсорбции при, например, болезни Крона, до относительно незначительных нарушений функции кишечника при хроническом дуодените или субклиническом течении дисбактериоза); проявления сахарного диабета и его осложнения (гипергликемия, полиурия, применение сахароснижающих средств, диабетическая нефропатия с нарушением реабсорбции); гипергликемия любого происхождения (в том числе и ятрогенная); почечный ацидоз, нефротический синдром; гиперкортицизм; гиперкатехоламинемия; гиперальдостеронизм; гипертиреоз; гиперпаратиреоз; гиперкальциемия; артериальная гипертензия; инфаркт миокарда; застойная сердечная недостаточность; факторы риска ИБС, в частности ожирение; передозировка сердечных гликозидов; диуретическая, глюкокортикоидная, цитостатическая терапия.

Поскольку неоднородность распределения Mg++ в тканях организма делает малоинформативным определение его содержания в сыворотке или эритроцитах, заподозрить магниевый дефицит можно на основании сочетания отдельных клинических признаков магниевого дефицита, особенно если они затрагивают различные системы и наблюдаются на фоне значимого провоцирующего фактора, например злоупотребления алкоголем. Разнообразные клинические симптомы и синдромы, связанные с дефицитом ионизированного магния, представлены в таблице.

Клинические проявления дефицита магния

Из множества патологических состояний, возникающих при магниевом дефиците, наиболее полно изучены сердечно-сосудистые заболевания. Инсулинорезистентность, дис- и гиперлипидемии, развивающиеся при дефиците Mg++, должны способствовать ускорению развития атеросклероза, что прогностически особенно неблагоприятно при возникающих при этом повышении активности плазменного ренина и продемонстрированного снижения выделения эндотелием вазодилатирующего фактора — окиси азота [4]. Имеются экспериментальные данные о роли дефицита Mg++ в развитии атеросклероза [5]. Эти факты хорошо объясняют, почему у жителей областей с повышенным уровнем Mg++ в воде отмечается замедление развития атеросклероза и меньшая смертность от этого заболевания. Понятна и известная связь между дефицитом Mg++ в воде и летальностью от острого инфаркта миокарда [6]. Необходимо подчеркнуть, что важен не только абсолютный уровень Mg++, но и уровень Ca++: величина отношения Ca++/Mg++ коррелирует со смертностью от проявлений ИБС [7].

Недостаток Mg++ в воде и пище служит и серьезным фактором риска развития артериальной гипертензии. Кроме самостоятельного вазодилатирущего эффекта ионов Mg++, опосредующегося многими вышеописанными механизмами, в условиях магниевого дефицита отмечена повышенная чувствительность артерий к воздействию прессорных аминов.

Весьма существенна роль магния при остром инфаркте миокарда. Потеря ионов Mg++ кардиомиоцитом является его ранней реакцией на ишемию, что приводит к истощению запасов АТФ, угнетению АТФ-зависимых реакций, в том числе угнетению функционирования K+/Na+-помпы и изменению внутриклеточного соотношения основных катионов. Повышение концентрации Ca++ в цитозоле вызывает активацию Ca++-зависимых протеаз и липаз, приводящую к повреждению клетки. До 95% больных в остром периоде инфаркта миокарда имеют сниженное содержание сывороточного магния (Святов, 1999). Одним из механизмов развития этого феномена можно считать повышенный выброс катехоламинов, который приводит к увеличению содержания свободных жирных кислот, связывающих Mg++ (что наблюдается при любом стрессе).

Дефицит Mg++ с преобладанием Са++ и неконтролируемое поступление последнего в кардиомиоцит лежит в основе реперфузионного синдрома, развивающегося после медикаментозной, инструментальной или спонтанной реваскуляризации миокарда при остром инфаркте и проявляющегося, прежде всего, нарушениями сердечного ритма.

Как при инфаркте миокарда, так и в других ситуациях внутриклеточный дефицит Mg++ может служить причиной развития синусовой тахикардии и других различных аритмий вплоть до фатальных. Выраженный магниевый дефицит сопровождается удлинением интервала QT (что, как известно, ассоциируется с развитием желудочковых нарушений ритма и внезапной смерти) и увеличением «дисперсии» QT (разницы между QTMAX и QTMIN), считающимся еще более надежным признаком высокой вероятности развития нарушений ритма, в том числе и фатальных. Наиболее характерным для дефицита Mg++ вариантом аритмии является желудочковая тахикардия типа «пируэт» (torsade de pointes), а также индуцированные дигиталисом нарушения ритма, пароксизмальная суправентрикулярная тахикардия, мономорфная желудочковая тахикардия.

У пациентов с инфарктом миокарда выявлена корреляция между дефицитом магния и разнообразными желудочковыми нарушениями ритма. При застойной сердечной недостаточности магниевый дефицит возникает как результат нейрогуморальных сдвигов (сипатоадреналовой гиперфункции, активации ренин-ангиотензин-альдостероновой системы), застоя в желудочно-кишечном тракте (ЖКТ), препятствующего абсорбции Mg++, и усугубляется вследствие диуретической и гликозидной терапии. У больных со сниженным уровнем Mg++ отмечается двукратное увеличение смертности от сердечной недостаточности.

Гипомагнезиемия ассоциируется с повышенной агрегацией тромбоцитов и возрастанием риска тромбозов и эмболий. При недостатке Mg++ ослабляется антиоксидантная защита. Магниевый дефицит (уменьшение его содержания в мышцах и эритроцитах) обнаружен у больных с пролапсом митрального клапана, для которых также характерны нарушения ритма [8].

Развивающийся при злоупотреблении алкоголем дефицит Mg++ играет определенную роль в формировании многих осложнений хронической интоксикации этанолом (от поведенческих реакций до миопатии) и существенную роль в развитии абстинентного синдрома [9].

В обычных физиологических условиях кинетический цикл Mg++ складывается из абсорбции в ЖКТ, распределения в средах организма и элиминации, осуществляемой в основном путем экскреции с мочой. Всасывание Mg++ может осуществляться во всем кишечнике вплоть до сигмовидной кишки. Его усвояемость из пищевых продуктов составляет 30–35% (то есть из 300–350 мг суточной потребности усваивается около 100 мг). Она может увеличиваться под влиянием витамина В6 и ряда органических кислот (молочной, аспарагиновой, оротовой). Молоко и некоторые молочные продукты, содержащие казеин, также способствуют увеличению абсорбции Mg++ (возможно, в связи с большим содержанием оротовой кислоты). Абсорбции Mg++ в ЖКТ препятствует большое содержание в пище веществ, с которыми он образует трудно- или нерастворимые соединения — белки, жиры. Всасывание уменьшается также при избытке ионов Ca++, конкурирующих с Mg++ на слизистой кишки, и фосфатов [10].

Общее количество магния в организме взрослого человека составляет 24–25 г или примерно 1000 ммоль. Наибольшая его часть — 60% — содержится в костях, формируя в содружестве с кальцием их структуру; в случае необходимости отсюда может быть мобилизовано не более 20–30%. Mg++ является типичным интрацеллюлярным элементом — его внутриклеточная фракция составляет 39% всего его запаса (до 80–90% внутриклеточного магния находится в виде комплекса с АТФ, в связи с чем уровень АТФ является одним из основных факторов, лимитирующих накопление этого элемента в клетке). Оставшийся 1% распределяется во внеклеточном пространстве, включая и сыворотку крови, на долю которой приходится лишь 0,3% [11].

Наибольшее количество магния содержится в тканях с высокоинтенсивными обменными процессами. Основная часть его внутриклеточной фракции практически поровну поделена между мозговой и мышечной тканями. При этом наивысшее относительное содержание Mg++ отмечается в миокарде. Концентрация магния в сыворотке крови составляет в норме 0,75–0,95 ммоль/л, а в клетках может достигать 5–10 ммоль/л. Однако в связи с неоднородностью его распределения в различных тканях внутриклеточная его концентрация варьирует в широких пределах, составляя, например, в эритроцитах лишь 2–2,6 ммоль/л. Содержание магния в сыворотке крови не отражает его запасы в организме, а зависит лишь от интенсивности его движения из депо к почкам. Также малоинформативно и его содержание в клеточных элементах крови из-за неоднородности распределения. Поэтому лабораторная оценка магниевого обмена наиболее достоверна, если анализируется экскреция Mg++ с мочой.

Обычно выведение Mg++ из организма осуществляется почками, через которые теряется примерно 100 мг/сут, то есть все всосавшееся из пищи количество. При его дефиците почечная экскреция снижается или прекращается вовсе; при увеличении поступления Mg++ увеличивается и экскреция.

Его потери с мочой возрастают под влиянием катехоламинов и глюкокортикоидных гормонов, чем объясняется возможность возникновения магниевого дефицита при стрессе. Существенные количества Mg++ могут теряться и в случае усиленного потоотделения при напряженной физической работе или тепловой нагрузке; при этом его потери с потом могут достигать 15%, в то время как в обычных условиях они не превышают 1,5 мг/сут (последним фактом при анализе магниевого гомеостаза часто пренебрегают).

Mg++ как фармакологическое средство обладает множеством разнообразных клинических эффектов, в частности антигипертензивным, антиишемическим, диуретическим и др., а также обилием показаний к применению. В большинстве случаев фармакологическое действие Mg++ проявляется и при отсутствии явных признаков его дефицита [12].

Возможно, это объясняется тем, что при многих патологических процессах развивается вторичный (общий или местный) магниевый дефицит, выступающий одним из патогенетических механизмов, способствуя прогрессированию заболевания и усугублению клинического состояния больного. Получение фармакологических эффектов Mg++ во многих случаях с недоказанным его дефицитом можно связать и с антикальциевым действием.

Положительный эффект препаратов Mg++ наблюдается как при лечении хронических заболеваний (когда Mg++ предупреждает обострения и улучшает качество жизни), так и в ургентных ситуациях (для восстановления нормального осуществления жизненно важных функций). При разных путях введения, обеспечивающих различные концентрации Mg++, на первый план выступают его разные эффекты. Например, если седативное, спазмолитическое и некоторое антигипертензивное действие при приеме внутрь проявляется довольно рано, то для заметного влияния на сердце (за исключением частоты сердечных сокращений) в этом случае требуется срок, измеряемый неделями [13].

Другим жизненно важным элементом является калий (К+), который служит основным внутриклеточным катионом и в норме концентрация которого в плазме составляет 3,5–5 ммоль/л, а в клетках — 150 ммоль/л. Обмен калия обусловлен его поступлением извне и выведением почками с мочой. Этот объем составляет 1,9–5,9 г калия в сутки. Содержание калия во внеклеточной жидкости составляет менее 2% от общего его содержания в организме. Высокое внутриклеточное содержание калия обеспечивается работой так называемого «натрий-калиевого насоса» — особой белковой структуры, расположенной в клеточной мембране, для работы которой требуются энергия молекул аденозинтрифосфата (АТФ) и присутствие ионов магния.

Натрий-калиевый насос начинает усиленно работать при повышении уровня калия в крови под действием альдостерона, «гормонов стресса» катехоламинов (адреналина и норадреналина) и инсулина [14]. Так создается трансмембранный потенциал покоя, наличие которого чрезвычайно важно для нормального функционирования нервной и мышечной ткани. Поскольку потери калия из внеклеточной жидкости быстро компенсируются за счет его притока из клеток, концентрация этого иона во внеклеточном пространстве на протяжении достаточно длительного времени изменяется очень мало. В результате критический дефицит калия, который может привести к сердечно-сосудистым и нервно-мышечным нарушениям, часто остается незамеченным при стандартных исследованиях [15].

На распределение калия в организме влияет ряд гормонов, кислотно-щелочное равновесие, скорость обновления клеток. Так, на активность Na+, K+-АТФазы опосредованно действует инсулин (способствует перемещению калия в мышечные клетки и клетки печени), повышая эту активность, поэтому больные сахарным диабетом находятся в группе риска по развитию гипокалиемии. Другими причинами гипокалиемии являются: недостаточное поступление его с пищей (голодание, диеты), интенсивная потеря жидкости (диарея, потоотделение, прием тиазидных диуретиков или слабительных), гипергликемия, гиперальдостеронизм, гипомагниемия и др. [16].

Наиболее частая причина гипокалиемии — повышенное выделение калия через желудочно-кишечный тракт (с рвотой, при поносе, при злоупотреблении слабительными) или с мочой (при длительном приеме диуретиков, а также при таких состояниях, как первичный или вторичный гиперальдостеронизм, классический дистальный ренальный канальцевый ацидоз, синдром Барттера). Кроме диуретиков, к гипокалиемии могут приводить и другие лекарственные препараты: ампициллин, пенициллин, карбенициллин, гентамицин, амфотерицин В, салицилаты. Снижение поступления калия с пищей очень редко приводит к гипокалиемии. Переход калия из внеклеточной жидкости в клетки может наблюдаться при избыточной активности минералкортикоидов, введении инсулина, при алкалозе. Периодический внезапный переход калия из внеклеточной жидкости в клетки наблюдается при периодическом гипокалиемическом параличе [17].

Возможности назначения внутрь неорганических солей магния (Mg++) и калия (К+) в терапевтических дозах ограничены, в связи со способностью таких доз вызывать нежелательные явления. Учитывая это, некоторые органические кислоты, витамины, повышая абсорбцию К+ и Mg++ в кишечнике и сокращая их потери с мочой, позволяют использовать меньшие дозы для получения отчетливых резорбтивных фармакологических эффектов. Среди таких факторов особое место занимает аспарагиновая кислота, которая, включаясь в цикл Кребса, нормализует нарушенные соотношения трикарбоновых кислот, активно участвует в синтезе АТФ, способствует поступлению калия и магния внутрь клетки и восстанавливает адекватную работу ионных насосов в условиях гипоксии. Аспарагиновая кислота представляет собой алифатическую аминокислоту, присутствующую в организме в составе белков, и в свободном виде играет важную роль в обмене азотистых веществ, участвует в образовании пиримидиновых оснований, а также мочевины. Уменьшая содержание аммиака, аспарагинат защищает ЦНС, нормализует процессы возбуждения и торможения в ней, стимулирует иммунную систему. Аспарагиновая кислота способствует увеличению запасов гликогена, что важно для нутритивной поддержки в целях обеспечения белково-энергетического гомеостаза. Соли аспарагиновой кислоты повышают выносливость, сопротивляемость организма к различным воздействиям, т. е. обладают адаптационным эффектом [18].

Таким образом, калия и магния аспарагинат (КМА) обладает следующими достоинствами: обеспечивает высокую абсорбцию К+ и Mg++ в ЖКТ при минимальных гастроинтестинальных побочных эффектах; не допускает существенного увеличения экскреции К+ и Mg++; обеспечивает накопление К+ и Mg++ в клетке; повышает клиническую эффективность ионов К+ и Mg++, что делает данное лекарство препаратом выбора при дефиците электролитов и позволяет использовать его в рутинной практике, в том числе в условиях отделений интенсивной терапии.

Литература

  1. Golf S. W., Bender S., Gruttner J. On the significance of magnesium in extreme physical stress // Cardiovasc Drugs Ther. 1998, Sep; 12 Suppl. 2: 197–202.
  2. Weiss M. J., Orkin S. H. Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis // Proc Natl Acad Sci USA. 1995, Oct 10; 92 (21): 9623–9627.
  3. Wang N. P., Chen P.-L., Huang S., Donoso L. A., Lee W.-H., Lee E. Y.-H. P. DNA-binding activity of retinoblastoma protein is intrinsic to its carboxil-terminal region // Cell Growth Diff. 1990. 1, 233–239.
  4. Pearson P. S., Evora P. R., Seccombe S. F., Schaff H. V. Hypomagnesaemia Nitric Oxide Release from Coronary Endothelium: Protective Role of Magnesium Infusion After Cardiac Operation // Ann.Thorac.Surg. 1998; 65: 967–972.
  5. Jellinek H., Takacs E. Morphological aspects of the effects of orotic acid and magnesium orotate on hypercholesterolemia in rabbits // Arzneimittelforschung. 1995 Aug; 45 (8): 836–842.
  6. Rubenowitz E. Magnesium in drinking water in relation to morbidity and mortality from acute myocardial infarction // Epidemiology. 2000. Vol. 11 (4). P. 416–421
  7. Taylor-Robinson D., Davies H. A., Sarathchandra P., Furr P. M. 1991. Intracellular location of mycoplasmas in cultured cells demonstrated by immunocytochemistry and electron microscopy // Int. J. Exp. Pathol. Vol. 72. P. 705–714.
  8. Cohen L., Laor A., Kitzes R. Magnesium malabsorption in postmenopausal osteoporosis // Magnesium. 1983. Vol. 2. P. 139–143.
  9. Durlach J. Magnesium chloride or magnesium sulfate: a genuine question // Magnes. Res. 2005. Vol. 18, № 3. P. 187–192.
  10. Косарев В. В., Бабанов С. А. Клиническая фармакология лекарственных средств, применяемых при сердечно-сосудистых заболеваниях. Самара, 2010, с. 140.
  11. Мартынов А. И., Степура О. Б., Пак Л. С., Мельник О. О. Магний и сердечно-сосудистая система // Клин. медицина. 1998. № 8. С. 63–65.
  12. Мартынов А. И., Остроумова О. Д., Маев И. В. Роль магния в патогенезе и лечении артериальной гипертонии // Тер. архив. 1999. № 12. С. 67–69.
  13. Мартынов А. И., Остроумова О. Д., Маев И. В. К вопросу о состоянии системы гомеостаза при эссенциальной гипертензии // Российские медицинские вести. 1999. № 3. С. 19–20.
  14. Clausen T., Everts M. E. Regulation of the Na, K–pump in skeletal muscle // Kidney Int. 1989. Vol. 35. P. 1–13.
  15. Вёрткин А. Л., Талибов О. Б. Обмен магния и терапия препаратами магния при гестозе // Фарматека. 2005, № 2, 13–17.
  16. Физиология человека: в 3-х томах; пер. с англ. / Под ред. Р. Шмидта и Г Тевса. 3-е изд. М.: Мир, 2004.
  17. Котова О. В., Рябоконь И. В. Патогенетическая роль дефицита калия и магния в развитии неврологических заболеваний // РМЖ. 2012. T. 29. P. 1493.
  18. Shechter M. Oral magnesium therapy improves endothelial function in patients with coronary artery disease // Circulation. 2000. Vol. 102. 1. P. 2353.

А. Л. Вёрткин*, доктор медицинских наук, профессор
О. Б. Талибов*, кандидат медицинских наук
А. С. Скотников*, 1, кандидат медицинских наук
А. М. Грицанчук**

* ГБОУ ВПО МГМСУ им. А. И. Евдокимова МЗ РФ, Москва
** ГБУЗ ГКБ № 50 ДЗМ, Москва

1 Контактная информация: skotnikov.as@mail.ru

Купить номер с этой статьей в pdf




Все новости и обзоры - в нашем канале на «Яндекс.Дзене». Подписывайтесь

Актуальные проблемы

Специализации




Календарь событий: