Фармакокинетика ингаляционных глюкокортикостероидов

Ингаляционные глюкокортикостероиды (ИГКС) являются средствами первой линии, которые применяются для длительного лечения больных бронхиальной астмой (БА) [2, 10]. Они эффективно блокируют воспалительный процесс в дыхательных путях, а клиническим проявлени




Ингаляционные глюкокортикостероиды (ИГКС) являются средствами первой линии, которые применяются для длительного лечения больных бронхиальной астмой (БА) [2, 10]. Они эффективно блокируют воспалительный процесс в дыхательных путях, а клиническим проявлением положительного эффекта ИГКС считается уменьшение выраженности симптомов заболевания и, соответственно, снижение потребности в приеме пероральных глюкокортикостероидов (ГКС), β2-агонистов короткого действия, снижение уровня воспалительных медиаторов в жидкости бронхоальвеолярного лаважа, улучшение показателей функции легких, снижение вариабельности в их колебании [10]. В отличие от системных ГКС, ИГКС обладают высокой селективностью, выраженной противовоспалительной и минимальной минералокортикоидной активностью. При ингаляционном пути введения препаратов в легких откладывается приблизительно 10—30% номинальной дозы [8]. Процент отложения зависит от молекулы ИГКС, а также от системы доставки препарата в дыхательные пути (дозированные аэрозоли или сухая пудра), причем при использовании сухой пудры пропорция легочного отложения удваивается по сравнению с использованием дозированных аэрозолей, включая и применение спейсеров [4, 16]. Большая часть дозы ИГКС проглатывается, абсорбируется из желудочно-кишечного тракта и быстро метаболизируется в печени, что обеспечивает высокий терапевтический индекс ИГКС по сравнению с системными ГКС [3]

К препаратам для местного ингаляционного применения относятся флунизолид (ингакорт), триамцинолона ацетонид (ТАА) (азмакорт), беклометазон дипропионат (БДП) (бекотид, бекломет) и препараты современной генерации: будесонид (пульмикорт, бенакорт), флютиказона пропионат (ФП) (фликсотид), мометазона фуроат (МФ) и циклезонид. Для ингаляционного применения выпускаются препараты в виде аэрозолей, сухой пудры с соответствующими устройствами для их применения, а также растворы или суспензии для использования с помощью небулайзеров

В связи с тем что существует множество устройств для ингаляций ИГКС, а также из-за недостаточного умения больных пользоваться ингаляторами необходимо учесть, что количество ИГКС, доставляемого в дыхательные пути в виде аэрозолей или сухой пудры, определяется не только номинальной дозой ГКС, но и характеристикой устройства для доставки препарата — типом ингалятора, а также техникой ингаляции больного [20].

Несмотря на то что ИГКС оказывает местное воздействие на дыхательные пути, существуют разноречивые сведения о проявлении нежелательных системных эффектов (НЭ) ИГКС, от их отсутствия и до выраженных проявлений, представляющих риск для больных, особенно для детей [23]. К таким НЭ необходимо отнести подавление функции коры надпочечников, воздействие на метаболизм костной ткани, кровоподтеки и утончение кожи, образование катаракты [3].

Проявления же системных эффектов преимущественно определяются фармакокинетикой препарата и зависят от общего количества ГКС, поступающего в системный кровоток (системная биодоступность, F) и величины клиренса ГКС. Исходя из этого можно предположить, что выраженность проявлений тех или иных НЭ зависит не только от дозировки, но и, в большей степени, от фармакокинетических свойств препаратов.

Поэтому основным фактором, определяющим эффективность и безопасность ИГКС, является селективность препарата по отношению к дыхательным путям — наличие высокой местной противовоспалительной активности и низкой системной активности (табл. 1).

Таблица 1. Селективность ИГКС

В клинической практике ИГКС отличаются между собой по величине терапевтического индекса, представляющего собой отношение между выраженностью клинических (желательных) эффектов и системных (нежелательных) эффектов [3], поэтому при высоком терапевтическом индексе имеет место лучшее соотношение эффект/риск.

Биодоступность

ИГКС быстро всасываются в желудочно-кишечном тракте и дыхательных путях. На абсорбцию ГКС из легких могут оказывать влияние размеры ингалируемых частиц, так как частицы размером менее 0,3 ммк откладываются в альвеолах и всасываются в легочный кровоток [14].

При вдыхании аэрозолей из дозированных ингаляторов через спейсер с большим объемом (0,75 л — 0,8 л) увеличивается процент доставки препарата в периферические дыхательные пути (5,2%). При использовании дозированных ингаляторов с аэрозолями или сухой пудры ГКС через дискахалер, турбухалер и другие устройства только 10—20% ингалированной дозы откладывается в дыхательных путях, при этом до 90% дозы откладывается в ротоглоточной области и проглатывается [8]. Далее эта часть ИГКС, абсорбируясь из желудочно-кишечного тракта, попадает в печеночный кровоток, где большая часть препарата (до 80% и более) инактивируется [19]. В системный кровоток ИГС поступают преимущественно в виде неактивных метаболитов, за исключением активного метаболита БДП — беклометазона 17-монопропионата (17-БМП) (приблизительно 26%), и только незначительная часть (от 23% ТАА до менее 1% ФП) — в виде неизмененного препарата. Поэтому системная оральная биодоступность (Forа1) у ИГКС очень низка, она практически равна нулю.

Однако следует учесть, что часть дозы ИГКС [примерно 20% номинально принятой, а в случае БДП (17-БМП) — до 36%], поступая в дыхательные пути и быстро абсорбируясь, попадает в системный кровоток. Более того, эта часть дозы может вызывать внелегочные системные НЭ, особенно при назначении высоких доз ИГКС, причем здесь немаловажное значение отводится типу используемого ингалятора с ИГКС, так как при вдыхании сухой пудры будесонида через турбухалер легочное отложение препарата увеличивается в 2 раза и более по сравнению с ингаляцией из дозированных аэрозолей [21].

Таким образом, высокий процент отложения препарата во внутрилегочных дыхательных путях в норме дает лучший терапевтический индекс для тех ИГКС, которые имеют низкую системную биодоступность при оральном пути введения. Это относится, например, к БДП, имеющему системную биодоступность за счет кишечной абсорбции, в отличие от будесонида, обладающего системной биодоступностью преимущественно за счет легочной абсорбции [24].

Для ИГКС с нулевой биодоступностью после пероральной дозы (флютиказон), характер устройства и техника проведения ингаляции определяют только эффективность лечения, но не влияют на терапевтический индекс [5].

Поэтому при оценке системной биодоступности необходимо учитывать общую биодоступность, то есть не только низкую оральную (почти нулевую у флютиказона и 6—13% у будесонида), но и ингаляционную биодоступность, средние величины которых колеблются в пределах от 20 (ФП) до 39% (флунизолид) (табл. 2) [8].

Для ИГКС с высокой фракцией ингаляционной биодоступности (будесонид, ФП, БДП) системная биодоступность может возрастать при наличии воспалительных процессов в слизистой бронхиального дерева. Это было установлено при сравнительном исследовании системных эффектов по уровню снижения кортизола в плазме крови после однократного назначения будесонида и БДП в дозе 2 мг в 22 ч здоровым курящим и некурящим лицам [24]. Следует отметить, что после ингаляции будесонида уровень кортизола у курящих был на 28% ниже, чем у некурящих.

Это позволило сделать вывод о том, что при наличии воспалительных процессов в слизистой дыхательных путей при астме и хроническом обструктивном бронхите может измениться системная биодоступность тех ИГКС, которые имеют легочную абсорбцию (в данном исследовании это будесонид, но не БДП, имеющий кишечную абсорбцию).

Большой интерес вызывает мометазона фуроат (МФ), новый ИГКС с очень высокой противовоспалительной активностью, у которого отсутствует биодоступность. Существует несколько версий, объясняющих этот феномен. Согласно первой из них, 1 МФ из легких не сразу попадает в системный кровоток, подобно будесониду, длительно задерживающемуся в дыхательных путях из-за образования липофильных конъюгатов с жирными кислотами. Это объясняется тем, что МФ имеет высоколипофильную группу фуроат в позиции С17 молекулы препарата, в связи с чем он поступает в системный кровоток медленно и в количествах, недостаточных для определения. Согласно второй версии, МФ быстро метаболизируется в печени. Третья версия гласит: агломераты лактоза-МФ обусловливают низкую биодоступность из-за снижения степени растворимости. Согласно четвертой версии, МФ быстро метаболизируется в легких и потому при ингаляции не достигает системной циркуляции. И наконец, предположение, что МФ не поступает в легкие, не находит подтверждения, так как имеются данные о высокой эффективности МФ в дозе 400 мкг у больных с астмой. Поэтому первые три версии могут в какой-то степени объяснять факт отсутствия биоступности у МФ, однако этот вопрос требует дальнейшего изучения [1].

Таким образом, системная биодоступность ИГКС представляет собой сумму ингаляционной и оральной биодоступности. У флунизолида и беклометазона дипропионата системная биодоступность составляет примерно 60 и 62% соответственно, что несколько превышает сумму оральной и ингаляционной биодоступности других ИГКС.

В последнее время был предложен новый препарат ИГКС — циклезонид, оральная биодоступность которого практически равна нулю [23]. Это объясняется тем, что циклезонид является пролекарством, его афинность по отношению к ГКС-рецепторам почти в 8,5 раза ниже, чем у дексаметазона. Однако, попадая в легкие, молекула препарата подвергается действию ферментов (эстераз) и переходит в свою активную форму (афинность активной формы препарата в 12 раз выше, чем у дексаметазона). В связи с этим циклезонид лишен целого ряда нежелательных побочных реакций, связанных с попаданием ИГКС в системный кровоток.

Связь с белками плазмы крови

ИГКС имеют довольно высокую связь с белками плазмы крови (табл. 2); у будесонида и флютиказона эта связь несколько выше (88 и 90%) по сравнению с флунизолидом и триамцинолоном — 80 и 71% соответственно. Обычно для проявления фармакологической активности лекарственных средств большое значение имеет уровень свободной фракции препарата в плазме крови. У современных более активных ИГКС — будесонида и ФП она составляет 12 и 10% соответственно, что несколько ниже, чем у флунизолида и ТАА — 20 и 29%. Эти данные могут свидетельствовать о том, что в проявлении активности будесонида и ФП, кроме уровня свободной фракции препаратов, большую роль играют и другие фармакокинетические свойства препаратов [13].

Объем распределения

Объем распределения (Vd) ИГКС указывает на степень внелегочного тканевого распределения препарата. Большой Vd свидетельствует о том, что более значительная часть препарата распределяется в периферических тканях. Однако большой Vd не может служить показателем высокой системной фармакологической активности ИГКС, так как последняя зависит от количества свободной фракции препарата, способной вступать в связь с ГКР. На уровне равновесной концентрации наибольший Vd, во много раз превышающий этот показатель у других ИГКС, выявлен у ФП (12,1 л/кг) (табл. 2); в данном случае это может указывать на высокую липофильность ФП.

Липофильность

Фармакокинетические свойства ИГКС на уровне тканей преимущественно определяются их липофильностью, являющейся ключевым компонентом для проявления селективности и времени задержки препарата в тканях. Липофильность увеличивает концентрацию ИГКС в дыхательных путях, замедляет их высвобождение из тканей, увеличивает сродство и удлиняет связь с ГКР, хотя до сих пор не определена грань оптимальной липофильности ИГКС [6].

В наибольшей степени липофильность проявляется у ФП, далее у БДП, будесонида, а ТАА и флунизолид являются водорастворимыми препаратами [11]. Высоколипофильные препараты — ФП, будесонид и БДП — быстрее абсорбируются из респираторного тракта и дольше задерживаются в тканях дыхательных путей по сравнению с неингаляционными ГКС — гидрокортизоном и дексаметазоном, назначаемыми ингаляционно. Этим фактом, возможно, и объясняется относительно неудовлетворительная антиастматическая активность и селективность последних [7, 18]. О высокой селективности будесонида свидетельствует тот факт, что его концентрация в дыхательных путях через 1,5 ч после ингаляции 1,6 мг препарата оказывается в 8 раз выше, чем в плазме крови, и это соотношение сохраняется на протяжении 1,5—4 ч после ингаляции [26]. Другое исследование [13] выявило большое распределение ФП в легких, так как через 6,5 ч после приема 1 мг препарата обнаруживалась высокая концентрация ФП в ткани легких и низкая в плазме, в отношении от 70:1 до 165:1.

Поэтому логично предположить, что более липофильные ИГКС могут откладываться на слизистой дыхательных путей в виде «микродепо» препаратов, что позволяет продлить их местный противовоспалительный эффект, так как для растворения кристаллов БДП и ФП в бронхиальной слизи требуется более 5—8 ч, тогда как для будесонида и флунизолида, имеющих быструю растворимость, этот показатель составляет 6 мин и менее 2 мин соответственно [11]. Было показано, что водорастворимость кристаллов, обеспечивающая растворимость ГКС в бронхиальной слизи, является важным свойством в проявлении местной активности ИГКС [11].

Другим ключевым компонентом для проявления противовоспалительной активности ИГКС является способность препаратов задерживаться в тканях дыхательных путей. В исследованиях in vitro, проведенных на препаратах легочной ткани, показано, что способность ИГКС задерживаться в тканях довольно тесно коррелирует с липофильностью. У ФП и беклометазона она выше, чем у будесонида, флунизолида и гидрокортизона [11]. В то же время в исследованиях in vivo показано, что на слизистой трахеи крыс будесонид и ФП задерживались дольше по сравнению с БДП [9, 17], причем будесонид задерживался дольше, чем ФП [17]. В первые 2 ч после интубации будесонидом, ФП, БДП и гидрокортизоном высвобождение радиоактивной метки (Ra-метки) из трахеи у будесонида было замедленным и составляло 40% против 80% у ФП и БДП и 100% у гидрокортизона. В последующие 6 ч наблюдалось дальнейшее увеличение высвобождения будесонида на 25% и БДП на 15%, в то время как у ФП дальнейшего увеличения высвобождения Ra-метки не отмечалось [18]

Эти данные противоречат общепринятому мнению о наличии корреляции между липофильностью ИГКС и их способностью к тканевой связи, так как менее липофильный будесонид задерживается дольше, чем ФП и БДП. Данный факт следует объяснить тем, что под действием ацетил-коэнзима А и аденозина трифосфата гидроксильная группа будесонида у атома углерода в положении 21 (С-21) замещается сложным эфиром жирных кислот, то есть происходит эстерификация будесонида с образованием конъюгатов будесонида с жирными кислотами. Этот процесс протекает внутриклеточно в тканях легких и дыхательных путей и в печеночных микросомах, где идентифицированы эфиры жирных кислот (олеаты, пальмитаты и др.) [25]. Конъюгация будесонида в дыхательных путях и легких происходит быстро, так как уже через 20 мин после применения препарата 70—80% Ra-метки определялось в виде конъюгатов и 20—30% — в виде интактного будесонида, тогда как через 24 ч определялось только 3,2% конъюгатов первоначального уровня конъюгации, причем в одинаковой пропорции они были выявлены в трахее и в легких, что свидетельствует об отсутствии неопределенных метаболитов [18]. Конъюгаты будесонида имеют очень низкое сродство к ГКР и потому не обладают фармакологической активностью [28].

Внутриклеточная конъюгация будесонида с жирными кислотами может происходить во многих типах клеток, будесонид может накапливаться в неактивной, но обратимой форме. Липофильные конъюгаты будесонида образуются в легких в тех же пропорциях, что и в трахее, что указывает на отсутствие неидентифицированных метаболитов [27]. Конъюгаты будесонида не определяются в плазме и в периферических тканях.

Конъюгированный будесонид гидролизируется внутриклеточными липазами, постепенно высвобождая фармакологически активный будесонид, что может удлинить сатурацию рецептора и пролонгировать глюкокортикоидную активность препарата.

Таблица 3. Липофильность ИГКС и конъюгатов будесонида

Если будесонид приблизительно в 6—8 раз менее липофилен, чем ФП, и, соответственно, в 40 раз менее липофилен по сравнению с БДП, то липофильность конъюгатов будесонида с жирными кислотами в десятки раз превышает липофильность интактного будесонида (табл. 3), чем и объясняется длительность его пребывания в тканях дыхательных путей [18].

Исследования показали, что эстерификация жирной кислотой будесонида приводит к пролонгированию его противовоспалительной активности. При пульсирующем назначении будесонида было отмечено удлинение ГКС-эффекта, в отличие от ФП. В то же время в исследовании in vitro при постоянном присутствии ФП оказался в 6 раз эффективнее будесонида [27]. Возможно, это объясняется тем, что ФП легче и быстрее извлекается из клеток, чем более конъюгированный будесонид, в результате чего примерно в 50 раз снижается концентрация ФП и, соответственно, его активность [27]).

Таблица 4. Корреляция между сродством ГКС и их метаболитов к ГКР и степенью подавления отека (параметры дексаметазона приняты за 1,0)

Таким образом, после ингаляции будесонида в дыхательных путях и легких образуется «депо» неактивного препарата в виде обратимых конъюгатов с жирными кислотами, что может удлинить его противовоспалительную активность. Это, несомненно, имеет огромное значение для лечения больных БА. Что касается БДП, более липофильного, чем ФП (табл. 4), то время его задержки в тканях дыхательных путей короче, чем у ФП, и совпадает с этим показателем у дексаметазона, что является, по-видимому, результатом гидролиза БДП до 17-БМП и беклометазона, липофильность последнего и дексаметазона одинаковы [18]. Более того, в исследовании in vitro [18] длительность пребывания Ra-метки в трахее после ингаляции БДП была больше, чем после его перфузии, что связано с очень медленным растворением кристаллов БДП, откладываемых в респираторных просветах во время ингаляции [11].

Продолжительное фармакологическое и терапевтическое действие ИГКС объясняется связью ГКС с рецептором и образованием комплекса ГКС+ГКР. Вначале будесонид связывается с ГКР медленнее, чем ФП, но быстрее, чем дексаметазон, однако через 4 ч разница в общем количестве связи с ГКР между будесонидом и ФП не обнаруживалась, в то время как у дексаметазона она составляла только 1/3 от связанной фракции ФП и будесонида.

Диссоциация рецептора из комплекса ГКС+ГКР отличалась у будесонида и ФП, будесонид по сравнению ФП диссоцируется быстрее из комплекса. Длительность комплекса будесонид+рецептор in vitro составляет 5—6 ч, этот показатель ниже по сравнению с ФП (10 ч) и 17-БМП (8 ч) [12], но более высок по сравнению с дексаметазоном [18]. Из этого следует, что различия в местной тканевой связи будесонида, ФП, БДП не определяются на уровне рецепторов, а преимущественное влияние на разницу показателей оказывают различия в степени неспецифической связи ГКС с клеточными и субклеточными мембранами.

Как было показано выше (табл. 2), наибольшее сродство к ГКР имеет ФП (приблизительно в 20 раз выше, чем у дексаметазона, в 1,5 раза выше, чем у 17-БМП, и в 2 раза выше, чем у будесонида) [8]. На сродство ИГКС к ГКС-рецептору может оказать влияние и конфигурация молекулы ГКС. Например, у будесонида его право- и левовращающие изомеры (22R и 22S) имеют не только различное сродство к ГКР, но и разную противовоспалительную активность [8] (табл. 4).

Сродство 22R к ГКР более чем в 2 раза превосходит сродство 22S, а будесонид (22R22S) занимает в этой градации промежуточное положение, его сродство к рецептору равно 7,8, а сила подавления отека — 9,3 (параметры дексаметазона приняты за 1,0) (табл. 4).

Метаболизм

БДП быстро, в течение 10 мин, метаболизируется в печени с образованием одного активного метаболита — 17-БМП и двух неактивных — беклометазона 21-монопропионата (21-БМН) и беклометазона [7].

В легких из-за низкой растворимости БДП, являющейся определяющим фактором в степени образования 17-БМП из БДП, может быть замедлено образование активного метаболита. Метаболизм 17-БМП в печени происходит в 2—3 раза медленнее, чем, например, метаболизм будесонида, что может быть лимитирующим фактором перехода БДП в 17-БМП.

ТАА метаболизируется с образованием 3 неактивных метаболитов: 6β-триокситриамцинолона ацетонида, 21-карбокситриамцинолона ацетонида и 21-карбокси-6β-гидрокситриамцинолона ацетонида.

Флунизолид образует главный метаболит — 6β-гидроксифлунизолид, фармакологическая активность которого в 3 раза превосходит активность гидрокортизона и имеет Т1/2 равную 4 ч.

ФП быстро и полностью инактивируется в печени с образованием одного частично активного (1% активности ФП) метаболита — 17β-карбоксильной кислоты.

Будесонид быстро и полностью метаболизируется в печени при участии цитохрома р450 3А (CYP3A) с образованием 2 главных метаболитов: 6β-гидроксибудесонид (образует оба изомера) и 16β-гидроксипреднизолон (образует только 22R). Оба метаболита обладают слабой фармакологической активностью.

Мометазона фуроат (фармакокинетические параметры препарата изучались у 6 добровольцев после ингаляции 1000 мкг — 5 ингаляций сухой пудры с радиометкой): 11% радиометки в плазме определялось через 2,5 ч, этот показатель увеличивался до 29% через 48 ч. Экскреция радиометки с желчью составила 74% и с мочой 8%, общее количество достигало 88% через 168 ч [1].

Кетоконазол и циметидин могут увеличить уровень будесонида в плазме после перорально принятой дозы в результате блокады CYP3A.

Клиренс и период полувыведения

ИГКС имеют быстрый клиренс (CL), его величина примерно совпадает с величиной печеночного кровотока, и это является одной из причин минимальных проявлений системных НЭ. С другой стороны, быстрый клиренс обеспечивает ИГКС высокий терапевтический индекс. Клиренс ИГКС колеблется в пределах от 0,7 л/мин (ТАА) до 0,9—1,4 л/мин (ФП и будесонид, в последнем случае имеет место зависимость от принятой дозы). Системный клиренс для 22R составляет 1,4 л/мин и для 22S — 1,0 л/мин. Наиболее быстрый клиренс, превышающий скорость печеночного кровотока, обнаружен у БДП (150 л/ч, а по другим данным — 3,8 л/мин, или 230 л/ч) (табл. 2), что дает основание предполагать наличие внепеченочного метаболизма БДП, в данном случае в легких, приводящего к образованию активного метаболита 17-БМП [15]. Клиренс 17-БМП равняется 120 л/ч.

Период полувыведения (Т1/2) из плазмы крови зависит от объема распределения и величины системного клиренса и указывает на изменение концентрации препарата с течением времени. У ИГКС Т1/2 из плазмы крови колеблется в широких пределах — от 10 мин (БДП) до 8—14 ч (ФП) (табл. 2). Т1/2 других ИГКС довольно короткий — от 1,5 до 2,8 ч (ТАА, флунизолид и будесонид) и 2,7 ч у 17-БМП [8]. У флютиказона Т1/2 после внутривенного введения составляет 7—8 ч, в то время как после ингаляции из периферической камеры этот показатель равен 10 ч [8]. Имеются и другие данные, например, если Т1/2 из плазмы крови после внутривенного введения был равен 2,7 (1,4—5,4) ч, то Т1/2 из периферической камеры, рассчитанный по трехфазовой модели, составлял в среднем 14,4 ч (12,5—16,7 ч), что связано с относительно быстрой абсорбцией препарата из легких — Т1/2 2 (1,6-2,5) ч по сравнению с его медленной системной элиминацией [15]. Последняя может привести к аккумуляции препарата при длительном его применении, что было показано после семидневного назначения ФП через дискахалер в дозе 1000 мкг 2 раза в день 12 здоровым добровольцам, у которых концентрация ФП в плазме крови увеличивалась в 1,7 раза по сравнению с концентрацией после однократной дозы 1000 мкг. Аккумуляция сопровождалась увеличением подавления уровня кортизола в плазме крови (95% против 47%) [22].

Заключение

Биодоступность ингаляционных ГКС зависит от молекулы препарата, от системы доставки препарата в дыхательные пути, от техники ингаляции и др. При местном назначении ИГКС происходит значительно лучший захват препаратов из дыхательных путей, они дольше удерживаются в тканях дыхательных путей, обеспечивается высокая селективность препаратов, особенно флютиказона пропионата и будесонида, лучшее соотношение эффект/риск и высокий терапевтический индекс препаратов. Внутриклеточная эстерификация будесонида жирными кислотами в тканях дыхательных путей приводит к местной задержке и формированию «депо» неактивного, но медленно регенерирующего свободного будесонида. Более того, большой внутриклеточный запас конъюгированного будесонида и постепенное выделение свободного будесонида из конъюгированной формы может удлинить сатурацию рецептора и противовоспалительную активность будесонида, несмотря на его меньшее, по сравнению с флютиказоном пропионатом и беклометазоном монопропионатом, сродство к ГКС-рецептору [22]. На сегодняшний день существуют единичные сведения о фармакокинетических исследованиях весьма перспективного и высокоэффективного препарата мометазона фуроата, у которого при отсутствии биодоступности при ингаляционном введении обнаруживаются высокая противовоспалительная активность у больных астмой.

Длительная экспозиция и замедленная сатурация рецептора обеспечивают удлинение противовоспалительной активности будесонида и флютиказона в дыхательных путях, что может служить основанием для однократного назначения препаратов.

По вопросам литературы обращайтесь в редакцию

Литература
  1. Affrime M. B., Cuss F., Padhi D. et al. Bioavailability and Metabolism of Mometasone Furoate following Administration by Metered-Dose and Dry-Powder Inhalers in Healthy Human Volunteers // J. Clin. Pharmacol. 2000: 40; 1227-1236.
  2. Barnes P. J. Inhaled glucocorticoids: new developments relevant to updating the asthma management guidelines // Respir. Med. 1996; 9: 379-384
  3. Barnes P. J., Pedersen S., Busse W. W. Efficacy and safety of inhaled corticosteroids //Am. J. Respir. Crit. Care Med 1998; 157: 51- 53
  4. Barry P. W., Callaghan C. O. Inhalation drug delivery from seven different spacer devices Thorax 1996; 51: 835-840.
  5. Borgstrom L. E, Derom E., Stahl E. et al. The inhalation device influences lung deposition and bronchodilating effect of terbutaline //Am. J. Respir. Crit. Care Med. 1996; 153: 1636-1640.
  6. Brattsand R. What factors determine antiinflammatory activity and selectivity of inhaled steroids // Eur. Respir. Rev. 1997; 7: 356-361.
  7. Daley-Yates P. T., Price A. C., Sisson J. R. et al. Beclomethasone dipropionat: absolute bioavailability, pharmacokinetics and metabolism following intravenous, oral, intranasal and inhaled administration in men // Br. J. Clin. Pharmacol. 2001; 51: 400-409.
  8. Derendorf H. Pharmacokinetic and pharmacodynamic properties of inhaled corticosteroids in relation to efficacy and safety // Respir. Med. 1997; 91 (Suppl. A): 22-28.
  9. Esmailpour N., Hogger P., Rabe K. F. et al. Distribution of inhaled fluticason propionate between human lung tissue and serum in vivo // Eur. Respir. J. 1997; 10: 1496-1499.
  10. Guidelines for the Diagnosis and Management of asthma. Expert panel report, № 2. National institutes of health, Bethesda, MD. (NIP Publication № 97-4051).
  11. Hogger P., Ravert J., Rohdewald P. Dissolution, tissue binding and kinetics of receptor binding of inhaled glucocorticoids // Eur. Resip. J. 1993; 6: (Suppl. 17): 584 s.
  12. Hogger P., Rohdewald P. Binding kinetics of fluticason propionate to the human glucocorticoid receptor. Steroids 1994; 59: 597-602.
  13. Hogger P., Erpenstein U., Sorg C. et al Receptor affinity, protein expression and clinical efficacy of inhaled glucocorticoids // Am. J. Respir. Crit. Care Med. 1996; 153: A 336.
  14. Jackson W. F. Nebulised Budesonid Therapy in asthma scientific and Practical Review. Oxford, 1995: 1-64.
  15. Jenner W. N., Kirkham D. J. Immunoassay of beclomethasone 17-, 21-dipropionate and metabolites. In: Reid E, Robinson JD, Wilson I, eds. Bioanalysis of drugs and metabolites, New York, 1988: 77-86.
  16. Kenyon C. J., Thorsson L., Borgstrom L. Reduction in lung deposition of budesonide pressurized aerosol resulting from static chanjge? In plastic spacer devices // Drug delivery to the lungs. 1996; 7: 17-18.
  17. Miller-Larsson A., Maltson R. H., Ohlsson D. et al. Prolonged release from the airway tissue of glucocorticods budesonile and fluticasone propionate as compared to beclomethasone dipropionate and hydrocortisone (abstract) // Am. J. Respir. Crit. Care Med. 1994; 149: A 466.
  18. Miller-Larsson A., Maltson R. H., Hjertberg E. et al. Reversible fatty acid conjugation of budesonide: novel mechanism for prolonged retention of topically applied steroid in airway tissue // Drug. metabol. Dispos. 1998; v. 26 N 7: 623-630.
  19. Pedersen S., Byrne P. O. A comparison of the efficacy and safety of inhaled corticosteroids in asthma // Eur J Allergy Clin Immunol 1997; 52 (Suppl. 39): 1-34
  20. Selroos O., Pietinalho A., Lofroos A. B., Riska A. High-dose is more effective than low-dose inhaled corticosteroids when starting medication in patients with moderately severe asthma (abstract) // Am. J. Respir. Crit. Care Med. 1997; 155: A 349.
  21. Thorsson L., Dahlstrom K., Edsbacker S et al. Pharmacokinetics and systemic effects of inhaled fluticasone propionate in healthy subjects // Br. J. Clin. Pharmacol. 1997; 43: 155-161.
  22. Thorsson L., Edsbacker S. Conradson T. B. Lung deposition of budesonide from Turbuhaler is twice that from a pressured metered-dose-inhaler p-MDI // Eur. Respir. J. 1994; 10: 1839-1844.
  23. Tood G., Danlop K. Cason D., Shields M. Adrenal suppression in asthmatic children treated with high-dose fluticason propionate (abstract) // Am. J. Respir. Crit. Care Med. 1997; 155. № 4 (part 2 of 2 parts): A 356l.
  24. Trescoli-Serrano C., Ward W. J., Garcia-Zarco M. et al. Gastroinstestinal absorbtion of inhaled budesonide and beclomethasone: has it any significant systemic effect? // Am. J. Respir. Crit. Care Med. 1995; 151 (№ 4 part 2): A 3753.
  25. Tunec A. K., Sjodin, Hallstrom G. Reversible formation of fatty acid esters of budesonide, an anti-asthma glucocorticoid, in human lung and liver microsomes // Drug. Metabolic. Dispos. 1997; 25: 1311-1317.
  26. Van den Bosch J. M., Westermann C. J. J., Edsbacker J. et al. Relationship between lung tissue and blood plasma concentrations of inhaled budesonide // Biopharm Drug. Dispos. 1993; 14: 455-459.
  27. Wieslander E., Delander E. L., Jarkelid L. et al. Pharmacological importance of the reversible fatty acid conjugation of budesonide stadied in a rat cell line in vitro // Am. J. Respir. Cell. Mol. Biol. 1998; 19: 1-9.
  28. Wurthwein G., Render S., Rodhewald P. Lipophility and receptor affinity of glucocorticoids // Pharm Ztg. Wiss. 1992; 137: 161-167.
  29. Dietzel K. et al. Ciclesonide: an On-Site-Activate Steroid // Prog. Respir. Res. Basel. Karger. 2001: v. 31; p. 91-93.





Приложения



  • Фармакокинетика ингаляционных глюкокортикостероидов - Таблица 2.
    Фармакокинетические параметры ИГКС

Актуальные проблемы

Специализации




Календарь событий:




Вход на сайт